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A B S T R A C T

Pea (Pisum sativum L) and chickpea (Cicer arietinum L) are important grain legumes grown in the Palouse region
of the Pacific Northwest United States. The USDA-ARS grain legume breeding program in this region focuses
on developing pea and chickpea varieties with high yield potential, resistance to biotic and abiotic stresses, and
superior agronomic characteristics. In this study, aerial high resolution multispectral imaging was evaluated to
phenotype yield potential differences among genotypes in green pea, yellow pea and chickpea. Five experiments
(three field pea and two chickpea) with 10–25 varieties grown at two locations (Pullman, Washington; Gene-
see, Idaho) were assessed. Images were acquired approximately 60, 70 and 90 days after planting (DAP) at 110
above ground level. Normalized difference vegetation index (NDVI), green normalized difference vegetation in-
dex, soil adjusted vegetation index (SAVI) and simple ratio (SR) image based features (SUM, MIN, MAX, MEAN)
were extracted. In most cases, the MEAN NDVI data was found to be consistently correlated with dry seed yield
(p<0.05), with green pea genotypes showing highest correlations with seed yield (r=0.64–0.93at about 70
DAP, both during “plot-by-plot” and “by genotype” comparisons). The MEAN SAVI and SR values were also
strongly correlated with yield at 61–72 DAP in most of the pea experiments. The data collected during flowering
and early pod development phenological growth stages was found to be useful in yield estimation. The developed
methods can be used for early generation evaluation in breeding programs, where yield cannot be estimated due
to limited seed availability.

1. Introduction

Pea (Pisum sativum L) and chickpea (Cicer arietinum L) are cool sea-
son, annual grain legume crops that are produced worldwide for hu-
man food and animal feed (McPhee, 2003; Coyne et al., 2011). They
are often grown in rotation with small grain cereals to break disease
cycles, and their symbiotic relationships with Rhizobial bacteria en-
hances the soil fertility through atmospheric nitrogen fixation. More-
over, these crops are a nutritious source of food, feed and fodder, rich
in protein, soluble starch, vitamins, and minerals (Cheng et al., 2015).
The pea is also an economically important crop with production in
more than 87 countries (McPhee, 2003). The Palouse region, in the Pa-
cific Northwest United States, is one of the leading producers of pea
and chickpea in the USA (USDA-NASS 2016). The United States De-
partment of Agriculture- Agricultural Research Service field pea and

chickpea breeding program has released several field pea and chick-
pea cultivars (McPhee and Muehlbauer, 2002, 2004; Muehlbauer et al.,
1998, 2004, 2006; McGee et al. 2012, 2013; McGee and McPhee, 2012;
Vandemark et al., 2014, 2015) with higher yield potential and stress tol-
erance.

Phenotyping is a key aspect in plant breeding programs that refers
to the evaluation of plant traits (e.g. plant height, pod length) and
crop performance (e.g. seed yield, quality) resulting from interaction be-
tween the genotype and the environment. In general, field phenotyp-
ing is challenging due to tedious in-field measurements requiring sig-
nificant resources (personnel, time) (Araus and Cairns, 2014). Remote
sensing offers a practical alternative for high-throughput crop pheno-
typing in breeding research plots. Aerial images acquired from satel-
lites and unmanned aerial vehicles (UAVs) have been used for yield es-
timation in rice (Tennakoon et al., 1992; Swain et al., 2010), sugarcane
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(Rao et al., 2002; Murillo and Carbonel, 2012), sunflower (Vega et al.,
2015), corn (Shanahan et al., 2001; Fang et al., 2008; Yao et al., 2015),
wheat (Serrano et al., 2000; Paiva et al., 2013), cotton (Brandão et al.,
2011), and pea (Mkhabela et al., 2011). Most of these studies utilize
vegetation indices (VIs), calculated from visible and near infrared (NIR)
bands of the electromagnetic spectra, to estimate yield potential. In gen-
eral, a healthy plant scatters more NIR radiation from cell walls in the
mesophyll of the leaves, while visible light is highly absorbed by pig-
ments such as chlorophyll a and b (Basnyat et al., 2004; Glenn et al.,
2008). An increase in chlorophyll content is indicative of higher pho-
tosynthetic rates, which can be related to higher yield potential (Sid'ko
et al., 2017). VIs such as normalized difference vegetation index (NDVI)
capture this differential absorption/reflection in visible and NIR bands,
which can be used to infer overall crop health/productivity (Candiago
et al., 2015).

In recent years, applications of UAV systems for plant phenotyping
have increased. Sensors integrated with UAVs have been used for es-
timating plant height (Hu et al., 2018), biomass (Quirós et al., 2019;
Bendig et al., 2014), and leaf area index (Chen, 2018). UAVs can be in-
tegrated with sensors to acquire aerial data at desired spatial and tem-
poral resolution to estimate yield potential (Zhang and Kovacs, 2012).
Both, low (multispectral) and high (hyperspectral) spectral resolution
sensors can be utilized for this purpose. Although aerial imaging for
yield estimation has been explored, there is very limited literature vali-
dating this approach in plant breeding programs (Haghighattalab et al.,
2016; Shi et al., 2016), given the natural variability between different
varieties. The small scale of breeding plots enables the use of multirotor
UAVs equipped with multispectral cameras that can acquire useful in-
formation for phenotyping applications (Sankaran et al., 2015).

A key aspect for remote sensing-based phenotyping applications is
image processing methodologies used to extract features representative
of crop traits. Aerial images collected using UAV-based multispectral
cameras must be processed accurately in order to extract useable in-
formation. For these purposes, it is necessary to create proper image
processing protocols for methodologies such as plot segmentation, ex-
traction of VIs, and extraction of summary statistics (minimum, aver-
age, maximum and sum of the pixel values within region of interest).
This may also include supervised and unsupervised learning pipelines
(Bunting et al., 2014; Tagil and Jenness, 2008). Moreover, protocols

need to be evaluated and adapted for a specific crop for practical appli-
cation and rapid extraction of image features representing crop perfor-
mance traits. Legume crops are different from other crops evaluated in
the field conditions (e.g. wheat, corn, rice, etc.), as they are small plants
with relatively lower biomass accumulation in comparison to other field
crops. The overall goal presented in this work was to validate the tech-
nique in legume crops, to assess the applicability of the techniques for
phenotyping in legume breeding programs. Therefore, the specific ob-
jective of this study was to create a reliable image processing protocol to
determine key remote sensing features captured using UAV that could
capture differences in yield potential in field pea and chickpea breeding
programs. Summary statistic measures of four VIs - NDVI, green NDVI
(GNDVI), simple ratio (SR), and soil adjusted vegetation index (SAVI) -
were evaluated (Thenkabail and Lyon, 2012).

2. Methods

2.1. Field plots

Data were collected from two field locations: Pullman, Washington
(46°42′0.12″ N, −117° 8′18.26″ W) and Genesee, Idaho (46°36′20.43″
N, −116°58′13.86″ W). The Pullman and Genesee field sites with breed-
ing plots are shown in Figs. 1 and 2. The pea/chickpea plots were
planted in Genesee and Pullman on 21 April 2015 and 26 April 2015,
respectively. A seed treatment was applied to all seeds prior to plant-
ing that contained fludioxonil (0.56gkg⁠−1, Syngenta, Greensboro, North
Carolina, USA), mefenoxam (0.38gkg⁠−1, Syngenta, Greensboro, North
Carolina, USA), and thiabendazole (1.87gkg⁠−1, Syngenta, Greensboro,
North Carolina, USA), thiamethoxam (0.66mlkg⁠−1, Syngenta, Greens-
boro, North Carolina, USA), and molybdenum (0.35gkg⁠−1). About 0.5g
Mesorhizobium ciceri inoculant (1×10⁠8 CFUg⁠−1; Novozyme, Cam-
bridge, Massachusetts, USA) was added to each chickpea seed packet 1
day prior to planting. Peas and chickpeas were planted at a density of
86 seedsm⁠−2 and 43 seedsm⁠−2, respectively, in about 1.5×5.0m plots.
Weeds were controlled by a single post-plant/pre-emergence application
of metribuzin (0.42kgha⁠−1, Bayer Crop Science, Raleigh, North Car-
olina, USA) and linuron (1.34kgha⁠−1, NovaSource, Phoenix, Arizona,
USA).

A randomized complete block design with three replications was
used for all field location experiments (Fig. 2). The three pea exper

Fig. 1. False colour aerial images (R, G, NIR) of plots at 61 days after planting in Pullman (a), and 68 days after planting in Genesee (b). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Distribution of experiments, blocks, and plots in Pullman (a) and Genesee (b) field sites showing the randomized complete block design with three replicate plots. Genotype/variety
are differentiated based on the colour scale. Note: The varieties between experiments are different. For example, genotype/variety 1 in 1501 does not correspond to the same genotype/
variety in experiment 1502 or 1581. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

iments at the Pullman field site were labelled as 1501, 1502, and 1503
and contained 75, 48 and 30 plots, respectively. The number of geno-
types and breeding lines (genotypes) planted in 1501 was 25 (green
pea), experiment 1502 was 16 (yellow pea), and experiment 1503 was
10 (green pea). Chickpea experiments in Pullman were labelled as 1581
and 1583 with 54 and 72 plots (18 and 24 genotypes), respectively. At
the Genesee field site, pea experiments 1501 and 1502, and chickpea ex-
periment 1581 were planted with the same experimental design, num-
ber of plots, and genotypes as those described for the Pullman field site.
Each block had the same number of plots. The field site was maintained
based on standard procedures used by the grower in the Palouse region.
Plots were harvested using a Zurn⁠® 150 plot combine and seed was fur-
ther cleaned mechanically with an air blower. Seed yield was computed
per plot and converted into kg ha⁠−1.

2.2. Data collection

The UAV-multirotor OktoXL 6S12 (HiSystems GmbH, Moormerland,
Germany) was used for imaging the field plots. The platform was pow-
ered by a 6500mAh Lithium-ion polymer battery, and was capable
of manual and automated control. For data acquisition in the present
study, the UAV was manually controlled with a 4-km radio transmit-
ter (MX20 Hott, Graupner, Stuttgart, Germany). The flight time was
approximately 10min. The sensor used was a 3-band modified multi

spectral camera (Canon Powershot ELPH 340 HS, LDC LLC, Carlstadt,
New Jersey, USA), which captures the relative reflectance as digital
numbers (DN) in the red (R), green (G), and near infrared (NIR,
800–900nm) regions of the electromagnetic spectrum. The camera was
placed on a gimbal that could adjust the position of the camera during
the flight. The firmware was set to acquire images at 0.2Hz. The 8-bit,
16-megapixel images were stored on the camera's memory card. Flight
height was set at 110m above ground level (AGL) (GSD=3.5cm) based
on Sankaran et al. (2018), where the GNDVI data acquired at 50m and
120m AGL imagery were similar, and were highly correlated (r=0.95;
P<0.0001). At this altitude, the entire field plots were captured, which
eliminated the need for image stitching as well.

In 2015, at the Pullman field site, aerial images were acquired at 61,
72, and 89 days after planting (DAP). At 89 DAP, the pea trials 1502
were harvested due to early senescence. At the Genesee field site, im-
ages were acquired at 68 DAP and 94 DAP. At both locations, at the
61 DAP imaging, the pea plants were at growth stages between 3 and
4; at 68–72 DAP, the pea plants were at growth stages between 5 and
6; and at 89–94 DAP, the pea plants were at growth stages between 6
and 7 (Kalu and Fick, 1981). The growth stages 3–7 represent early bud-
ding, late budding, early flowering, later flowering, and early seed pod
development morphological stages, respectively, as described by Kalu
and Fick (1981). At both locations, at 61 DAP, chickpeas were at ap-
proximate growth stage R2 (full bloom); at 72 DAP between growth
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stages R3 (early pod visible) and R4 (when pod has reached full size and
is largely flat); and at 89 DAP chickpeas were between R6 (full seed)
and R7 (leaves start to yellow and 50% of 153 pods are yellow) (Saxena
and Hawtin, 1981). A 25×25cm white reference panel (Spectralon
Reflectance Target, CSTM-SRT-99-100, Spectra Vista Cooperation, New
York, USA) was used for radiometric correction during data collection.
Table 1 lists the image features and statistic measures extracted from
data for each location and data collection period.

2.3. Image processing

ArcGIS⁠® (10.2, ESRI, Redlands, California, USA) software was used
for all raster and vector data processing as detailed in following sec-
tions. In ArcGIS, the vector processing in ArcGIS represents position
coordinates, while raster processing refers to grids cells made up of
pixels. Summary statistic measures were extracted from each plot us-
ing variable digital numbers of the image pixels extracted from the
VIs (NDVI, GNDVI, SR, and SAVI) in this study. The measures ex-
tracted were mean (MEAN), maximum (MAX), minimum (MIN) and
summation (SUM). The MEAN refers to the average of the pixel val-
ues found within each plot polygon; the MAX and MIN represent the

highest and lowest pixel values within each polygon that delimits a plot;
and SUM refers to the sum of all pixel values within a polygon or plot.
Fig. 3 summarizes the image processing steps.

2.3.1. Radiometric correction (raster processing)
Post-image acquisition, radiometric correction was performed (Fig.

3a). Prior to the UAV flight mission, the reference panel was imaged at
less than 5m AGL. From this image, a polygon enclosing the reference
panel (99% reflectance in visible-near infrared spectra) was manually
generated and maximum 8-bit grey level for each band was set to 255.
The DN or pixel value of each pixel of individual band within the image
was corrected accordingly. After radiometric correction, the corrected
DN represents reflectance data as the image DN data were corrected for
incident solar radiation.

2.3.2. VI calculation (raster processing)
In the second step of raster data processing (each time point and lo-

cation image), NDVI (Equation (1)), GNDVI (Equation (2)), SR (Equa-
tion (3)) and SAVI (Equation (4)) images were generated using map al-
gebra (Shirabe, 2011) with red, green and NIR bands from the radio-
metrically corrected images (Fig. 3b).

Table 1
List of image features and statistic measures extracted from each experiments at each location and data collection period.
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Fig. 3. Raster and vector data processing steps. Solid line encloses steps in raster processing, and dashed line encloses steps in vector processing. The centroid point layer records the
statistical measurements (MEAN, SUM, MIN, MAX) for individual plots (5.55 sq. m), excluding the buffer zone.

(1)

(2)

(3)

(4)

where R refers to corrected DN (representing reflectance) at NIR, R and
G spectral bands.

2.3.3. Plot digitization (vector processing)
The goal for vector processing was to generate a layer of data, where

each plot is represented by a data point to allow extraction of statistical
measures. The first step of plot digitization was to create the polygons
enclosing the entire area of each plot (Fig. 3c). Following this, a nega-
tive buffer was created using the “buffer” command in ArcGIS (Fig. 3d),
that comprised of the creation of parallel boundary lines towards the in-
terior of the plot (as recommended in Bareth et al., 2015). This was per-
formed to eliminate border effects and avoid interference of border re-
gion crop anomalies on the extracted features. The distance between the
original plot border and the one created with the negative buffer was
15cm. With this border area elimination, the 74% of plot cover was re-
tained. For correct plot identification, each polygon was labelled with a
specific ID based on the location, time of imaging, and experiment (Fig.
3e and f). All extracted statistical measures (features) per plot and the
seed yield data were associated based on this unique plot ID.

2.3.4. Feature extraction
Summary statistical measures (MEAN, MAX, MIN and SUM) repre-

senting average, maximum, minimum, and sum of corrected DN data

for each plot were extracted from the NDVI, GNDVI, SR and SAVI im-
ages (Fig. 3g). These measures were summarized based on the plot ID
(Fig. 3h).

2.4. Statistical analysis

The resulting point layer attributes table with the summary of image
features statistical measures was exported to a text file. SAS version 9.3
(SAS Institute, Raleigh, North Carolina, USA) was used to calculate the
Pearson's correlation coefficients (r) between the four statistical mea-
surements (SUM, MIN, MAX, MEAN) of all VIs (NDVI, GNDVI, SR and
SAVI) and seed yield based on ‘plot-to-plot’ and average ‘by genotype’
data (from three replicate plots). The results are organized by experi-
ment, time of imaging, location, and vegetation index for the two loca-
tions and the two types of analysis (plot-to-plot and by genotype).

3. Results and discussion

3.1. Correlations between NDVI and GNDVI statistical measures with seed
yield

Table 2 summarizes the correlation between the statistical measures
(SUM, MIN, MAX, MEAN) derived from NDVI/GNDVI images and seed
yield based on different imaging periods (DAP), experiments (1501,
1502, 1503, 1581, 1583), type of comparison (“plot-by-plot”, “by geno-
type”), and location (Pullman, Genesee). At Pullman, both chickpeas
and peas were negatively affected by residual herbicide, resulting in
poor performance of chickpeas, in experiments 1581 and 1583, and
early senescence of peas, in experiments 1502 and 1503. Nevertheless,
as our goal was to identify the image features representing seed yield
potential different between genotypes and identify the right time point
for multispectral imaging, the acquired data was considered valid and
useful.

During “plot-by-plot” data analysis, the MEAN NDVI was signifi-
cantly correlated with seed yield in chickpea (r=0.33–0.71) at about
70 DAP. In pea, the correlation coefficients between MEAN NDVI/
GNDVI were significant (“plot-by-plot” analysis) at about both 60 and
70 DAP (r=0.31–0.93, Fig. 4). Among different experiments, exper
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Table 2
Correlations coefficient (r) between pea (experiments 1501, 1502 and 1503) and chickpea (experiments 1581 and 1583) with seed yield and image features for each experiment with
respect to dispersion statistics, DAP, vegetation indices NDVI and GNDVI, and location.

Dispersion statistics Feature Pullman Genesee

DAP 1501 1502 1503 1581 1583 DAP 1501 1502 1581

Plot-by-plot
SUM NDVI 61 0.61 0.76 0.79 0.18* 0.05* – – –

GNDVI 0.28 0.65 0.57 −0.00* 0.12* – – –
NDVI 72 0.74 0.34 0.93 0.42 0.49 68 0.74 0.60 −0.43
GNDVI 0.70 0.27* 0.71 0.04* 0.42 0.35 0.60 0.58
NDVI 89 −0.33 – 0.04* −0.17* 0.52 94 0.75 0.11* −0.29*
GNDVI −0.15* – 0.49* −0.43 0.39 −0.05* −0.33 −0.71

MIN NDVI 61 0.55 0.57 0.51 0.21* −0.01* – – –
GNDVI 0.33 0.65 0.54 0.01* 0.00* – – –
NDVI 72 0.60 0.46 0.41 0.42 0.21* 68 0.51 0.50 0.68
GNDVI 0.51 0.42 0.18 0.44 0.14* 0.46 0.58 0.66
NDVI 89 0.14* – 0.37* −0.18* 0.54 94 0.46 0.02* −0.54
GNDVI −0.13* – 0.14* −0.06* 0.50 0.64 −0.09* −0.57

MAX NDVI 61 0.06* 0.35 0.47 0.06* −0.22* – – –
GNDVI −0.04* 0.12* 0.24* 0.27* −0.12* – – –
NDVI 72 0.62 0.45 0.86 0.30* 0.30* 68 0.73 0.49 0.63
GNDVI 0.45 0.38 0.65 −0.02* 0.22* 0.59 0.46 0.43
NDVI 89 −0.29 – −0.12* −0.44 0.48 94 0.29 −0.10* −0.68
GNDVI −0.28 – −0.27* −0.44 0.40 0.29 −0.18* −0.69

MEAN NDVI 61 0.62 0.76 0.79 0.18* 0.04* – – –
GNDVI 0.36 0.65 0.57 0.04* 0.32* – – –
NDVI 72 0.84 0.45 0.93 0.41 0.33 68 0.74 0.60 0.71
GNDVI 0.56 0.31 0.91 0.53 0.04* 0.72 0.61 0.58
NDVI 89 −0.24 – 0.14* −0.20* 0.53 94 0.75 0.02* −0.70
GNDVI −0.41 – −0.22* −0.21* 0.45 0.73 −0.33* −0.75

By genotype
SUM NDVI 61 0.84 0.76 0.86 0.12* 0.03* – – –

GNDVI 0.73 0.60 0.70 0.06* 0.13* – – –
NDVI 72 0.81 0.63 0.81 0.21* 0.22* 68 0.64 0.48* 0.49
GNDVI 0.71 0.51 0.58 −0.20* 0.29* 0.45 0.46* 0.67
NDVI 89 0.69 – −0.13* −0.08* 0.78 94 0.65 0.20* 0.06*
GNDVI 0.05* – −0.24* −0.20* 0.30* 0.34* −0.48* 0.38*

MIN NDVI 61 0.73 0.50 0.75 −0.03* −0.01* – – –
GNDVI 0.59 0.43* 0.54* 0.44* 0.01* – – –
NDVI 72 0.61 0.55 0.45 0.33* 0.02* 68 0.50 0.59 0.49
GNDVI 0.68 0.48* 0.24* 0.33* −0.06* 0.55 0.55 0.74
NDVI 89 0.75 – 0.15* 0.01* 0.81 94 0.50 −0.12* −0.01*
GNDVI 0.49 – 0.20* 0.14* 0.57 0.54 −0.20* −0.08*

MAX NDVI 61 0.34* 0.27* −0.01* 0.32* −0.22* – – –
GNDVI 0.14* −0.06* −0.30* 0.10* −0.12* – – –
NDVI 72 0.75 0.57 0.88 0.10* 0.28* 68 0.58 0.41* 0.51
GNDVI 0.63 0.29* 0.67 0.23* 0.22* 0.50 0.32* 0.52
NDVI 89 0.64 – −0.40* −0.13* 0.73 94 0.32 −0.36* −0.53
GNDVI 0.27* – −0.13* −0.31* 0.48 0.24* −0.45* −0.55

MEAN NDVI 61 0.84 0.76 0.84 0.13* 0.01* – – –
GNDVI 0.71 0.35* 0.27* 0.10* 0.03* – – –
NDVI 72 0.80 0.69 0.81 0.31* 0.10* 68 0.64 0.48* 0.70
GNDVI 0.70 0.49* 0.61 0.20* 0.17* 0.66 0.46* 0.67
NDVI 89 0.71 – −0.21* 0.09* 0.78 94 0.65 −0.29* −0.45*
GNDVI 0.39* – −0.30* −0.18* 0.57 0.50 −0.48* −0.36*

*p>0.05 (not significant at 5% confidence interval).

Fig. 4. Correlation between seed yield and average MEAN-NDVI (“plot-by-plot” analysis) at 72 DAP in Pullman field site, experiments (a) 1501 and (b) 1503.
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iment 1503 showed the highest correlations between NDVI-based SUM,
MAX, and MEAN data with seed yield, using both “plot-by-plot” and
“by genotype” data comparisons, especially when the features were de-
rived from data collected at 72 DAP (r=0.81–0.93). In regard to cor-
relation analysis “by genotype”, the green pea experiments (1501) from
Pullman performed better than Genesee (1501) using MEAN NDVI data
at about 70 DAP. Remote sensing data acquired at this time point was
useful in identifying high yielding genotypes, as these genotypes were
found to be associated with higher vegetation index values. The MEAN
NDVI data (at about 70 DAP) from green pea experiments were cor-
related with seed yield (“by genotype”) in both Pullman and Gene-
see; while the data from yellow pea was only correlated with seed
yield in Pullman. This could be attributed to differences in pea type.
The yellow pea plants have a pale yellow-green foliage compared to
green peas, which could have resulted in less variability in the NDVI
data. In most comparisons, the correlation between MEAN NDVI (both
“plot-by-plot” and “by genotype” analysis) data and seed yield was con-
sistent and significant when data was acquired at 68 DAP. Similar strong
correlations have been found in other crops such as sunflower (Vega
et al., 2015), where NDVI data was found to be highly correlated to
grain yield (r=0.69–0.77) with images acquired during sunflower's R1
growth stage (floral button formation beginning). In both our study and
Vega et al. (2015), strong correlations of NDVI and yield were found
when images were acquired during reproductive growth.

Among the different statistical parameters (MIN, MAX, SUM,
MEAN), the SUM and MEAN features (followed by MIN) showed con-
sistent and comparable correlation with seed yield potential. Compar-
ing the MEAN-NDVI and -GNDVI data with seed yield, the MEAN-NDVI
resulted in higher correlation coefficients than MEAN-GNDVI. To sum-
marize, at both locations, MEAN NDVI data extracted from images ac-
quired at during flowering and early pod development was found to
be strongly correlated with seed yield data. The strong correlation at
mid-season in spring wheat and field pea has been also reported in
Basnyat et al. (2004), where correlation between satellite-image based
NDVI data with grain yield was studied. According to Munier-Jolain et
al. (2010), at the flowering/early pod development phenological growth
stages, the plants maximise their radiation use efficiencies, in order to
increase their photosynthetic activity to create assimilates to supply the
reproductive organs. In this study, strong correlations between NDVI
data and seed yield at flowering/early pod development stages confirm
that this stage is critical in predicting the overall crop performances.

3.2. Correlations between SAVI and SR statistical measures with seed yield

NDVI and GNDVI sensitivity can be limited by saturation to high
biomass content. This saturation can occur a few weeks before other
indexes such as SAVI (Qi et al., 1994). NDVI is a non-linear transfor-
mation of the SR. This indicates that variation in plant biomass can
be captured using NDVI and GNDVI under low to medium biomass
conditions. In contrast, SR has better performance in capturing spatial
and spectral variations in the canopy, even under high biomass con-
ditions (Huete et al., 1997). Huete et al. (1997) reported that SR and
SAVI were marginally affected by small increments in biomass, and
the effect of biomass was much lower in these features than NDVI and
GNDVI. Although, legume crops have lower biomass than some other
field crops (e.g. wheat), SR and SAVI-based features were also eval-
uated in this study. In Table 3, statistical measurements (SUM, MIN,
MAX, MEAN) extracted from SR and SAVI images were calculated for
both pea (1501, 1502, 1503) and chickpea (1581, 1583) experiments
and correlated with the seed yield. There was a high correlation be-
tween MEAN SR and SAVI with seed yield in green pea experiments
from Pullman (61 and 72 DAP), and in green pea and chickpea exper

iments from Genesee (68 DAP). As with MEAN NDVI data, higher cor-
relations between seed yield and image-based data was found in experi-
ments 1501 and 1503 (green pea genotypes) at 72 DAP in Pullman (Fig.
5) than experiment 1502 (yellow pea genotypes). In addition to MEAN
SR/SAVI data, high r values were also found with MAX SR/SAVI data for
both “plot-by-plot” and “by genotype”; especially for experiments 1501
and 1503 (green pea) at both locations, with data acquired at about
70 DAP. Chickpea experiment 1581 had stronger relation between seed
yield with MEAN and MAX SR/SAVI data at Genesee only (68 DAP),
during both “plot-by-plot” and “by genotype” analysis.

Vegetation indices, such as NDVI and GNDVI data, get saturated at
growth stages with high vegetative growth, when sensitivity to changes
in biomass is lost (Zając et al., 2012; Gu et al., 2013). The MIN/MAX
NDVI and GNDVI data could have been contributed from non-canopy
objects in the region of interest (e.g. soil, weeds, anomalies). However,
the MAX feature of SAVI are not affected in high biomass content. SAVI/
SR data are also affected less by saturation (Xiao et al., 2002; Wang et
al., 2003). Stress conditions can also induce early senescence in crops
(Munier-Jolain et al., 2010). In summary, seed yield of green peas (1501
and 1503) in Pullman, correlated well with the MEAN SR/SAVI “by
genotype” and “plot-by-plot” data from images acquired at 72 DAP, and
yellow peas at 61 DAP. Chickpea experiment 1581 showed good corre-
lation between seed yield and MEAN SR/SAVI data values at about 70
DAP in Genesee (both “plot-by-plot” and “by genotype”). The environ-
mental conditions can directly impact the phenotype expression (Dhond
et al., 2013). In addition, the influence of the residual herbicide could
have affected the performance of certain chickpea varieties.

In general, imaging and extracting MEAN data during flowering/
early pod development resulted in good estimates of yield potential. In
other crops, such as wheat, strong linear regression between NDVI es-
timates and seed yield (R⁠2 =0.82; three cultivars, four environments)
were reported during UAV-based imaging at flowering stage (Duan et
al., 2017). Zhou et al. (2017) reported that the best relationship be-
tween grain yield and NDVI data (r=0.76) in rice at the beginning
of the reproductive phase (booting and heading stages). Similar results
were also found in soybean (Yu et al., 2016), where geometric fea-
tures extracted using Random Forest algorithm was found to be corre-
lated with yield at advanced reproductive stages (R4-R5 growth stages,
r=0.82, p<0.01). Fig. 6 shows the performance of genotypes based on
its yield potential and vegetation index data that are highly correlated
with their performance (e.g., MEAN SR at 72 DAP). It can be observed
that the plots with high VI values are indicative of high yield potential.

The application of modified digital camera could influence the re-
sults, especially since the NIR band captured broad wavelength re-
gion (800–900nm). Sensors with independent NIR channel and narrow
wavelength range are more reliable in accurately estimating crop para-
meters, although commercial modified cameras show high promise in
crop monitoring applications (Lebourgeois et al., 2008). Factors such as
season, time of the day, and developmental stage can also influence data
interpretation (Pratap et al., 2019), which needs to be considered dur-
ing data collection.

4. Conclusions

In this study, UAV-based multispectral images acquired at 60–90
DAP from five experiments (two green pea, one yellow pea, and two
chickpea) with 10–25 genotypes, were processed to phenotype differ-
ences in seed yield potential. The image features extracted were NDVI,
GNDVI, SAVI and SR-based SUM, MIN, MAX, MEAN data were corre-
lated with seed yield. The major findings are as follows:
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Table 3
Correlations coefficient (r) between pea (experiments 1501, 1502 and 1503) and chickpea (experiments 1581 and 1583) with seed yield and image features for each experiment with
respect to dispersion statistics, DAP, vegetation indices SR and SAVI, and location.

Dispersion statistics Feature Pullman Genesee

DAP 1501 1502 1503 1581 1583 DAP 1501 1502 1581

Plot-by-plot
SUM SR 61 0.37 0.76 0.79 0.10* 0.23* – – –

SAVI 0.61 0.86 0.79 0.15* 0.23* – – –
SR 72 0.70 0.08* 0.61 −0.07* 0.52 68 0.74 0.60 0.28
SAVI 0.74 −0.14* 0.92 0.42* 0.49 0.74 0.60 0.79
SR 89 0.20* – −0.27* −0.47 0.59 94 0.75 0.05* −0.70
SAVI −0.33 – 0.04* −0.17* 0.54 0.75 0.05* 0.00*

MIN SR 61 0.56 0.58 0.51 0.06* −0.02* – – –
SAVI 0.55 0.57 0.51 0.06* −0.01* – – –
SR 72 0.56 0.43 0.41 0.33* 0.21* 68 0.49 0.50 0.69
SAVI 0.60 0.43 0.41 0.32* 0.21* 0.51 0.50 0.68
SR 89 0.14* – 0.37 −0.17* 0.53 94 0.46 0.02* −0.55
SAVI 0.14* – 0.37 −0.18* 0.54 0.46 0.02* −0.54

MAX SR 61 0.21* 0.57 0.71 0.16* −0.19* – – –
SAVI 0.06* 0.35 0.46 0.21* −0.22* – – –
SR 72 0.63 0.19* 0.86 0.26* 0.30 68 0.73 0.49 0.63
SAVI 0.62 0.20* 0.86 0.25* 0.30 0.73 0.50 0.63
SR 89 −0.33* – 0.45 0.06* 0.52 94 0.29 −0.16* −0.02*
SAVI −0.29* – −0.12* −0.43* 0.48 0.29 −0.10* −0.68

MEAN SR 61 0.21* 0.57 0.71 0.18* 0.06* – – –
SAVI 0.62 0.76 0.79 0.18* 0.04* – – –
SR 72 0.75 0.45 0.92 0.48 0.33 68 0.74 0.60 0.72
SAVI 0.74 0.44 0.92 0.48 0.33 0.74 0.60 0.71
SR 89 −0.26 – 0.13* −0.08* 0.53 94 0.75 0.02* −0.69
SAVI −0.24 – 0.14* −0.09* 0.53 0.75 0.02* −0.70

By genotype
SUM SR 61 0.81 0.77 0.81 0.04* 0.23* – – – –

SAVI 0.84 0.76 0.86 0.12* 0.03* – – – –
SR 72 0.75 0.04* 0.70 −0.24* 0.27* 68 0.64 0.48* 0.47
SAVI 0.81 −0.16* 0.81 0.21* 0.22* 0.64 0.48* 0.75
SR 89 0.41 – −0.10* 0.23* 0.41 94 0.65 −0.20* −0.46*
SAVI 0.70 – −0.13* 0.09* 0.78 0.65 −0.20* 0.14*

MIN SR 61 0.74 0.51 0.76 −0.02* −0.02* – – –
SAVI 0.73 0.50 0.75 −0.03* −0.01* – – –
SR 72 0.61 0.50 0.45* 0.33* 0.03* 68 0.49 0.59 0.69
SAVI 0.61 0.49 0.46* 0.33* 0.02* 0.51 0.59 0.68
SR 89 0.23* – 0.16* −0.38* 0.40* 94 0.50 −0.13* −0.01*
SAVI 0.75 – 0.15* 0.01* 0.81 0.46 −0.12* −0.01*

MAX SR 61 0.44 0.71 0.83 0.08* −0.19* – – – –
SAVI 0.34* 0.27* −0.01* 0.32* −0.22* – – – –
SR 72 0.76 0.19* 0.87 0.12* 0.28* 68 0.58 0.41* 0.49
SAVI 0.75 0.21* 0.88 0.11* 0.28* 0.58 0.41* 0.49
SR 89 0.45 – −0.82 0.51 0.59 94 0.32* −0.36* −0.43*
SAVI 0.61 – −0.40* −0.13* 0.73 0.02* −0.36* −0.53

MEAN SR 61 0.81 0.77 0.83 0.08* −0.20* – – – –
SAVI 0.84 0.76 0.84 0.12* 0.01* – – – –
SR 72 0.81 0.10* 0.80 0.31* 0.11* 68 0.64 0.48* 0.69
SAVI 0.80 0.69 0.81 0.31* 0.10* 0.64 0.48* 0.70
SR 89 0.64 – −0.23* −0.02* 0.71 94 0.65 0.30* 0.01*
SAVI 0.70 – −0.21* −0.09* 0.78 0.65 0.29* 0.45*

*p>0.05 (not significant at 5% confidence interval).

⁃ The MEAN NDVI data was found to be consistently strongly correlated
with pea and chickpea seed yield, especially when derived from im-
ages collected during flowering/early pod development.

⁃ The MEAN and MAX SR/SAVI also showed strong correlation when
the data was derived from early budding and flowering growth stages
in pea plants.

⁃ The correlation results between image features and yield potential
analysed “by genotype” was comparable to when analysed “by plot”,
especially in green pea varieties.

⁃ Between multiple species, the correlation between image features
and seed yield potential in green pea genotypes was consistently
higher than those in yellow pea and chickpea. The reason for this ob-
servation could be because of pale green canopy colour and lower

canopy vigour (biomass) in yellow pea and chickpea genotypes, re-
spectively.

In summary, extracting MEAN NDVI from plots at early budding and
flowering growth stages can capture differences in seed yield potential
between genotypes. Such data can be acquired during early generation
stages within a breeding program, where genotype evaluations cannot
be performed in plot level due to limited availability of seeds.
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Fig. 5. Correlation of seed yield with MEAN SR and MAX SR in experiments (a and b) 1501 and (c and d) 1503, extracted from individual images at 72 DAP in Pullman field site using
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Fig. 6. Yield potential and MEAN SR data acquired from images at 72 DAP of genotypes in experiment 1503.
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List of abbreviations

AGL Above ground level
DAP Days after planting
DN Digital numbers
G Green
GNDVI Green normalized difference vegetation index
MAX Maximum value extracted from specific vegetation index data

MEAN Mean/average value extracted from specific vegetation index
data

MIN Minimum value extracted from specific vegetation index data
NDVI Normalized difference vegetation index
NIR Near infrared
R⁠G DN represent reflectance at green spectral band
R⁠NIR DN represent reflectance at near infrared spectral band
R⁠R DN represent reflectance at red spectral band
R Red
SAVI Soil adjusted vegetation index
SR Simple ratio
SUM Sum of all pixels extracted from specific vegetation index data
UAV unmanned aerial vehicle

9



UN
CO

RR
EC

TE
D

PR
OO

F

J.J. Quirós et al. Engineering in Agriculture, Environment and Food xxx (xxxx) xxx-xxx

VI vegetation index
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